Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            In the past decade, dynamical downscaling using “pseudo‐global‐warming” (PGW) techniques has been applied frequently to project regional climate change. Such techniques generate signals by adding mean global climate model (GCM)‐simulated climate change signals in temperature, moisture, and circulation to lateral and surface boundary conditions derived from reanalysis. An alternative to PGW is to downscale GCM data directly. This technique should be advantageous, especially for simulation of extremes, since it incorporates the GCM's full spectrum of changing synoptic‐scale dynamics in the regional solution. Here, we test this assumption, by comparing simulations in Europe and Western North America. We find that for warming and changes in temperature extremes, PGW often produces similar results to direct downscaling in both regions. For mean and extreme precipitation changes, PGW generally also performs surprisingly well in many cases. Moisture budget analysis in the Western North America domain reveals why. Large fractions of the downscaled hydroclimate changes arise from mean changes in large‐scale thermodynamics and circulation, that is, increases in temperature, moisture, and winds, included in PGW by design. The one component PGW may have difficulty with is the contribution from changes in synoptic‐scale variability. When this component is large, PGW performance could be degraded. Global analysis of GCM data shows there are regions where it is large or dominant. Hence, our results provide a road map to identify, through GCM analyses, the circumstances when PGW would not be expected to accurately regionalize GCM climate signals.more » « lessFree, publicly-accessible full text available December 28, 2025
- 
            Abstract. An extreme warming event near the North Pole, with 2 m temperature rising above 0 °C, was observed in late December 2015. This specific event has been attributed to cyclones and their associated moisture intrusions. However, little is known about the characteristics and drivers of similar events in the historical record. Here, using data from European Centre for Medium-Range Weather Forecasts Reanalysis, version 5 (ERA5), we study these winter extreme warming events with 2 m temperature over a grid point above 0 °C over the high Arctic (poleward of 80° N) that occurred during 1980–2021. In ERA5, such wintertime extreme warming events can only be found over the Atlantic sector. They occur rarely over many grid points, with a total absence during some winters. Furthermore, even when occurring, they tend to be short-lived, with the majority of the events lasting for less than a day. By examining their surface energy budget, we found that these events transition with increasing latitude from a regime dominated by turbulent heat flux into the one dominated by downward longwave radiation. Positive sea level pressure anomalies which resemble blocking over northern Eurasia are identified as a key ingredient in driving these events, as they can effectively deflect the eastward propagating cyclones poleward, leading to intense moisture and heat intrusions into the high Arctic. Using an atmospheric river (AR) detection algorithm, the roles of ARs in contributing to the occurrence of these extreme warming events defined at the grid-point scale are explicitly quantified. The importance of ARs in inducing these events increases with latitude. Poleward of about 83° N, 100 % of these events occurred under AR conditions, corroborating that ARs were essential in contributing to the occurrence of these events. Over the past 4 decades, both the frequency, duration, and magnitude of these events have been increasing significantly. As the Arctic continues to warm, these events are likely to increase in both frequency, duration, and magnitude, with great implications for the local sea ice, hydrological cycle, and ecosystem.more » « less
- 
            Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s hydrological cycle typically transporting water vapor poleward, delivering precipitation important for local climates. Understanding ARs in a warming climate is problematic because the AR response to climate change is tied to how the feature is defined. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by comparing 16 atmospheric river detection tools (ARDTs) to a common data set consisting of high resolution climate change simulations from a global atmospheric general circulation model. ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and spatial footprint are inversely correlated, and most focus regions experience increases in precipitation volume coming from extreme ARs. The spread of the AR precipitation response under climate change is large and dependent on ARDT selection.more » « less
- 
            Abstract The prediction skill for precipitation anomalies in late spring and summer months—a significant component of extreme climate events—has remained stubbornly low for years. This paper presents a new idea that utilizes information on boreal spring land surface temperature/subsurface temperature (LST/SUBT) anomalies over the Tibetan Plateau (TP) to improve prediction of subsequent summer droughts/floods over several regions over the world, East Asia and North America in particular. The work was performed in the framework of the GEWEX/LS4P Phase I (LS4P-I) experiment, which focused on whether the TP LST/SUBT provides an additional source for subseasonal-to-seasonal (S2S) predictability. The summer 2003, when there were severe drought/flood over the southern/northern part of the Yangtze River basin, respectively, has been selected as the focus case. With the newly developed LST/SUBT initialization method, the observed surface temperature anomaly over the TP has been partially produced by the LS4P-I model ensemble mean, and 8 hotspot regions in the world were identified where June precipitation is significantly associated with anomalies of May TP land temperature. Consideration of the TP LST/SUBT effect has produced about 25–50% of observed precipitation anomalies in most hotspot regions. The multiple models have shown more consistency in the hotspot regions along the Tibetan Plateau-Rocky Mountain Circumglobal (TRC) wave train. The mechanisms for the LST/SUBT effect on the 2003 drought over the southern part of the Yangtze River Basin are discussed. For comparison, the global SST effect has also been tested and 6 regions with significant SST effects were identified in the 2003 case, explaining about 25–50% of precipitation anomalies over most of these regions. This study suggests that the TP LST/SUBT effect is a first-order source of S2S precipitation predictability, and hence it is comparable to that of the SST effect. With the completion of the LS4P-I, the LS4P-II has been launched and the LS4P-II protocol is briefly presented.more » « less
- 
            Abstract Subseasonal-to-seasonal (S2S) precipitation prediction in boreal spring and summer months, which contains a significant number of high-signal events, is scientifically challenging and prediction skill has remained poor for years. Tibetan Plateau (TP) spring observed surface temperatures show a lag correlation with summer precipitation in several remote regions, but current global land–atmosphere coupled models are unable to represent this behavior due to significant errors in producing observed TP surface temperatures. To address these issues, the Global Energy and Water Exchanges (GEWEX) program launched the “Impact of Initialized Land Temperature and Snowpack on Subseasonal-to-Seasonal Prediction” (LS4P) initiative as a community effort to test the impact of land temperature in high-mountain regions on S2S prediction by climate models: more than 40 institutions worldwide are participating in this project. After using an innovative new land state initialization approach based on observed surface 2-m temperature over the TP in the LS4P experiment, results from a multimodel ensemble provide evidence for a causal relationship in the observed association between the Plateau spring land temperature and summer precipitation over several regions across the world through teleconnections. The influence is underscored by an out-of-phase oscillation between the TP and Rocky Mountain surface temperatures. This study reveals for the first time that high-mountain land temperature could be a substantial source of S2S precipitation predictability, and its effect is probably as large as ocean surface temperature over global “hotspot” regions identified here; the ensemble means in some “hotspots” produce more than 40% of the observed anomalies. This LS4P approach should stimulate more follow-on explorations.more » « less
- 
            Abstract. Subseasonal-to-seasonal (S2S) prediction, especially the prediction of extreme hydroclimate events such as droughts and floods, is not only scientifically challenging, but also has substantial societal impacts. Motivated by preliminary studies, the Global Energy and Water Exchanges(GEWEX)/Global Atmospheric System Study (GASS) has launched a new initiativecalled “Impact of Initialized Land Surface Temperature and Snowpack on Subseasonal to Seasonal Prediction” (LS4P) as the first international grass-roots effort to introduce spring land surface temperature(LST)/subsurface temperature (SUBT) anomalies over high mountain areas as acrucial factor that can lead to significant improvement in precipitationprediction through the remote effects of land–atmosphere interactions. LS4P focuses on process understanding and predictability, and hence it is differentfrom, and complements, other international projects that focus on theoperational S2S prediction. More than 40 groups worldwide have participated in this effort, including 21 Earth system models, 9 regionalclimate models, and 7 data groups. This paper provides an overview of the history and objectives of LS4P, provides the first-phase experimental protocol (LS4P-I) which focuses on the remote effect ofthe Tibetan Plateau, discusses the LST/SUBT initialization, and presents thepreliminary results. Multi-model ensemble experiments and analyses ofobservational data have revealed that the hydroclimatic effect of the springLST on the Tibetan Plateau is not limited to the Yangtze River basin but may have a significant large-scale impact on summer precipitation beyond EastAsia and its S2S prediction. Preliminary studies and analysis have alsoshown that LS4P models are unable to preserve the initialized LST anomaliesin producing the observed anomalies largely for two main reasons: (i) inadequacies in the land models arising from total soil depths which are tooshallow and the use of simplified parameterizations, which both tend to limit the soil memory; (ii) reanalysis data, which are used for initial conditions, have large discrepancies from the observed mean state andanomalies of LST over the Tibetan Plateau. Innovative approaches have beendeveloped to largely overcome these problems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
